
2002, Volume 45

Thomas M. Böhme,* Corinne E. Augelli-Szafran, Hussein Hallak, Thomas Pugsley, Kevin Serpa, and Roy D. Schwarz: Synthesis and Pharmacology of Benzoxazines as Highly Selective Antagonists at M₄ Muscarinic Receptors.

Page 3096. Entries in the first column of Table 1 are missing. The correct table is shown below.

Table 1. Binding Results of Benzoxazines

							р <i>K</i> i ^а				
example	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	\mathbb{R}^4	M ₁	M_2	M_3	M_4	M ₅	formula ^c	mp (°C)
16	CO ₂ CH ₃	CH ₃	9-OMe	CH ₃	5.93	6.38	6.40	6.72	5.44	$C_{23}H_{24}N_2O_4$	194-195
17	CO ₂ CH ₂ CH=CH ₂	CH_3	9-OMe	Н	5.88	5.97	6.39	7.82	5.65	$C_{24}H_{24}N_2O_4 \cdot 0.1H_2O$	188 - 190
18	CO ₂ CH ₂ CH=CH ₂	CH_3	9-OMe	(p-OMe)Bz	6.70	6.62	6.17	7.14	6.30	$C_{32}H_{32}N_2O_5 \cdot 0.04H_2O$	175 - 176
19	CO ₂ CH ₂ C ₆ H ^{I5}	CH_3	9-OMe	Ĥ	5.93	5.87	5.86	7.14	5.95	$C_{28}H_{26}N_2O_4$	176 - 178
20	CO ₂ (CH ₂)3CH ₃	CH_3	9-OMe	Н	5.88	5.63	5.99	7.17	5.60	$C_{25}H_{28}N_2O_4$	177 - 178
21	CO ₂ CH ₂ CH ₃	CH ₂ CH ₃	9-OMe	Н	5.66	5.87	7.04	8.40	5.51	$C_{24}H_{26}N_2O_4$	183 - 184
22	$CO_2CH_2CH_3$	CH_2CH_3	9-OMe	benzyl	6.44	6.43	7.30	7.01	6.32	$C_{31}H_{32}N_2O_4 \cdot 0.04H_2O$	75-85
23	CO ₂ CH ₂ CH ₃	CH_2CH_3	9-OMe	CH ₃	5.82	6.15	6.66	8.52	5.51	$C_{25}H_{28}N_2O_4 \cdot 0.06H_2O$	172 - 174
24	CO ₂ CH ₂ CH ₃	$(CH_2)_2CH_3$	9-OMe	Н	5.69	5.97	7.15	8.70	5.65	C2sHN ₂ O ₄ ·0.11H ₂ O	194-196
25	CO ₂ CH ₂ CH ₃	$(CH_2)_2CH_3$	9-SMe	Н	6.06	5.84	7.00	9.00	5.62	$C_{25}H_{28}N_2O_3S \cdot 0.02H_2O$	185 - 186
26	CO ₂ CH ₂ CH ₃	$(CH_2)_2CH_3$	9-SMe	CH_3	5.48	5.42	6.64	8.70	5.77	$C_{26}H_{30}N_2O_3S \cdot 0.27H_2O$	139 - 143
27	CO ₂ CH ₂ CH ₃	$(CH_2)_2CH_3$	9-OMe	CH_3	5.88	6.29	7.15	8.70	5.47	$C_{26}H_{30}N_2O_4$	150 - 151
28	CO ₂ CH ₂ CH ₃	(CH ₂) ₃ CH ₃	9-OMe	Н	4.88	6.47	6.82	9.00	4.95	$C_{26}H_{30}N_2O_4$	180 - 182
29	$CO_2CH_2CH_3$	$(CH_2)_3CH_3$	9-SMe	Н	6.06	5.66	6.47	8.52	5.83	$C_{26}H_{30}N_2O_3S$	159 - 161
30	$CO_2CH_2CH_3$	$(CH_2)_4CH_3$	9-OMe	Н	4.69	5.14	6.34	7.96	5.27	$C_{27}H_{32}N_2O_4$	170 - 172
31	CO ₂ CH ₂ CH ₃	$(CH_2)_5CH_3$	9-OMe	Н	5.51	5.34	6.55	7.85	>4.55	$C_{28}H_{34}N_2O_4$	157 - 160
32	CO ₂ CH ₂ CH ₃	CH_3	9-C1	Н	5.29	5.49	5.56	6.44	5.27	$C_{22}H_{21}ClN_2O_3 \cdot 0.7H_2O$	196 - 197
33	$CO_2CH_2CH_3$	CH_3	7-C1	Н	>5.36	5.61	5.29	5.71	5.32	$C_{22}H_{21}CIN_2O_3^d$	188 - 189
34	$CO_2CH_2CH_3$	CH_3	9-SMe	Н	5.75	5.66	6.64	8.15	5.71	$C_{23}H_{24}N_2O_3S \cdot 0.02H_2O$	188 - 189
35	$CO_2CH_2CH_3$	CH_3	9-OH	Н	>4.66	>4.57	4.59	>4.91	>4.55	$C_{22}H_{22}N_2O_4{}^e$	241 - 243
36	CO ₂ CH ₂ CH ₃	CH_3	9-OMe	CH_2CH_3	5.88	6.66	6.58	6.96	5.60	$C_{25}H_{28}N_2O_4{}^f$	173 - 175
37	CO ₂ CH ₂ CH ₃	CH_3	9-OMe	CH_3	5.70	6.29	6.04	7.82	5.43	$C_{24}H_{26}N_2O_4 \cdot 0.1H_2O$	174 - 176
38	CONCH ₃ C ₂ H ₅	CH_3	9-OMe	Н	4.66	5.39	4.81	5.01	4.71	$C_{24}H_{27}N_3O3^g$	162 - 164
39	$CH_2C_5H_6$	CH_3	9-OMe	Н	5.60	5.27	5.69	5.87	5.95	$C_{27}H_{26}N_2O_2 \cdot 0.04H_2O$	196 - 198
40	oxadiazole ^b	CH_3	9-OMe	Н	5.12	5.66	5.51	7.21	5.21	$C_{23}H_{22}N_4O_3 \cdot 0.19H_2O$	195 - 197
41 (PD102807)	CO ₂ CH ₂ CH ₃	CH_3	9-OMe	Н	5.88	6.27	6.59	8.15	5.47	$C_{23}H_{24}N_2O_4$	190-192

^{*a*} The affinity of these compounds for the five human receptor subtypes (M_1-M_5) was determined by [³H]-NMS binding using membranes from transfected Chinese hamster ovarian (CHO) cells. All compounds were tested at least three times, and the value shown is given as the geometric mean. The standard error of the mean (SEM) for all compounds tested ranged from 6% to 18%. The complete protocol is described by Dörje et al.¹² and Buckley et al.¹³ The K_i values of the test compounds were derived from IC₅₀ values using the Cheng– Prusoff equation, $K_i - IC_{50}/(1 + L/K_d)$, with the radioligand concentration L = 0.1 nM and the following equilibrium dissociation constants K_D of [_H] NMS, determined in previous saturation binding experiments (nM): M₁ (1.28); M₂ (0.85); M₃ (0.94); M₄ (3.10); M₅ (0.79).³⁰ ^{*b*} Oxadiazole = 3-methyl[1,2,4]oxadiazol-5-yl. ^{*c*} All compounds have analytical results within ±0.4% of theoretical values unless otherwise noted. Some difficulty was found in obtaining combustion analysis in the indicated compounds because of the propensity of these compounds to retain solvents. ^{*d*} High mass: calcd 397.1319; found 397.1325. ^{*c*} High mass: calcd 379.1658; found 379.1651. ^{*f*} High mass: calcd 421.2127; found 421.2122. ^{*g*} High mass: calcd 406.2130; found 406.2137.

JM020996J

10.1021/jm020996j Published on Web 09/13/2002